Sequence-tagged site (STS) content mapping of human chromosomes: theoretical considerations and early experiences.

نویسندگان

  • E D Green
  • P Green
چکیده

The magnitude of the effort required to complete the human genome project will require constant refinements of the tools available for the large-scale study of DNA. Such improvements must include both the development of more powerful technologies and the reformulation of the theoretical strategies that account for the changing experimental capabilities. The two technological advances described here, PCR and YAC cloning, have rapidly become incorporated into the standard armamentarium of genome analysis and represent key examples of how technological developments continue to drive experimental strategies in molecular biology. Because of its high sensitivity, specificity, and potential for automation, PCR is transforming many aspects of DNA mapping. Similarly, by providing the means to isolate and study larger pieces of DNA, YAC cloning has made practical the achievement of megabase-level continuity in physical maps. Taken together, these two technologies can be envisioned as providing a powerful strategy for constructing physical maps of whole chromosomes. Undoubtedly, future technological developments will promote even more effective mapping strategies. Nonetheless, the theoretical projections and practical experience described here suggest that constructing YAC-based STS-content maps of whole human chromosomes is now possible. Random STSs can be efficiently generated and used to screen collections of YAC clones, and contiguous YAC coverage of regions exceeding 2 Mb can be readily obtained. While the predicted laboratory effort required for mapping whole human chromosomes remains daunting, it is clearly feasible.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An STS content map of human chromosome 11: localization of 910 YAC clones and 109 islands.

Physical mapping of human chromosomes at a resolution of 100 kb to 1 Mb will provide important reagents for gene identification and framework templates for ultimately determining the complete DNA sequence. Sequence-tagged site (STS) content mapping, coupled with large fragment cloning in yeast artificial chromosomes, provides an efficient mechanism for producing first-generation, low-resolution...

متن کامل

A resource of mapped human bacterial artificial chromosome clones.

To date, despite the increasing number of genomic tools, there is no repository of ordered human BAC clones that covers entire chromosomes. This project presents a resource of mapped large DNA fragments that span eight human chromosomes at approximately 1-Mb resolution. These DNA fragments are bacterial artificial chromosome (BAC) clones anchored to sequence tagged site (STS) markers. This clon...

متن کامل

A contiguous high-resolution radiation hybrid map of 44 loci from the distal portion of the long arm of human chromosome 5.

A contiguous high-resolution map of 44 loci from a 35-Mb portion of the distal region of the long arm of human chromosome 5, q21-q35, was produced using radiation hybrid (RH) mapping in conjunction with a natural deletion mapping panel. The map includes 30 genes, four sequence-tagged site (STS) loci, and 10 DNA markers. Newly mapped markers fill two gap regions that were present in previous map...

متن کامل

BAC-HAPPY Mapping (BAP Mapping): A New and Efficient Protocol for Physical Mapping

Physical and linkage mapping underpin efforts to sequence and characterize the genomes of eukaryotic organisms by providing a skeleton framework for whole genome assembly. Hitherto, linkage and physical "contig" maps were generated independently prior to merging. Here, we develop a new and easy method, BAC HAPPY MAPPING (BAP mapping), that utilizes BAC library pools as a HAPPY mapping panel tog...

متن کامل

Localization of the human homolog of the yeast cell division control 27 gene (CDC27) proximal to ITGB3 on human chromosome 17q21.3.

The human homolog of the Saccharomyces cerevisiae cell division control 27 gene (CDC27) was mapped to human chromosome 17q12-q21 using a panel of human/rodent somatic cell hybrids and localized distal to the breast cancer susceptibility gene, BRCA1, using a panel of radiation hybrids. The radiation hybrid panel indicates that the most likely position of human CDC27 on human chromosomes 17 is be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PCR methods and applications

دوره 1 2  شماره 

صفحات  -

تاریخ انتشار 1991